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ABSTRACT

After passing two V -type atoms successively thr@ugingle mode interacting field in a cavity weiwe at a state
which has been analyzed to study nonclassicalith@evolved state of the system. In the procegdameto study
Mandel's Q-parameter and normal squeezing of tiseilteng field.
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INTRODUCTION

A manifold of nonclassical features of quantum figklivered by interaction of an electromagneteddiwith an
atom is a central topic in quantum optics [9-1@rks- Cummings model helps us to understand uoiteraof a
single atom with a high-quality cavity yielding maimmportant results. Interaction of an atom andsef beam in a
cavity performed close to one of the atomic resorarieads to light emission from the atom withch rset of
spectral and temporal properties. Temporally, ftightlemitted will show antibunching with a secondier
correlation which has a minimum for zero time del@pectrally, with the increase of laser inten$igit emitted
will have symmetric side lobes around the centratitation frequency which is called Mollow tripleBy
employing nonclassical light sources the perforneanaf optical technology such as metrology, comgation
and imaging can be improved beyond the limitatibrlassical physics. Various schemes have beenogempin
the context of cavity QED to generate Fock statessaperposition’s of Fock states using resonastactions of
two-level and three-level atoms one at a time witbavity mode followed by measurement of the atostétes.
The production of two-photon state has been redageently by single atom in a high-Q cavity.

In another aspect, the preparation of quantum egiednstates through cavity QED is a subject of risge
theoretical and experimental studies. Studying wthsstates evokes insight into the fundamentalguaintum
mechanics. They are also useful in quantum infolomaprocessing. Manipulation of a light field aetlkingle-
photon level provides a basis for important appiige in quantum information science. A desireddfistate can
be obtained by two elementary operations on a eingide field. For example, photon addition or saditon is
known to create a nonclassical state from any icalsstate and both the photon-subtracted [12]@raton-added
squeezed states were suggested to improve fidéldgntinuous variable teleportation.

In this paper, we consider an interacting one-nfaé which interacts in a cavity with the atom legting two V -
type atoms successively passing through it. Afeeibg out the atomic parts from the generated dtelt system
we get the field left in the cavity and explore tlenclassical properties of the field.

In the beginning, we describe the basic idea ofmnée interacting Fock space [1-8]. Then we give time-
dependent state of the system containing a V -thpee-level atom [9-10] which interacts with a dexgnode of
interacting field successively. In subsequent sastiwe show nonclassicality of the evolved stath wie help of
Mandel's Q paarameter and the initial coherentestases its coherence and become a squeezed set® d
interaction of field and successive passage of atotine cavity. Lastly, we give a conclusion.

BASIC PRELIMINARIES AND NOTATIONS
As a vector space [1] one mode interacting FockeapéC) is defined by

ra@) = @cmn} . _
n=0 (for any € IN wherel €|n ) is called then-particle subspace) (1)
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The differentn-particle subspaces are orthogonal, that is, theisu(1) is orthogonal. The square of the seminorm
of the vectoln) is given by

Min)=_n (2)
wherel, >0 for eachn ¢ IN and if for some n we havg = 0, then/,, = 0 for allm > n. After taking quotient, the
seminorm in (2) becomes a norm which maké€) a pre-Hilbert space. In the following we will cider its
completion, which, with an abouse of notation, Wil denoted by(C).

An arbitrary vectof in T'(€) is given by

f=ell) +all)+ ,::!.',1} . tefn) +... (3)
for anyn e IN with Il = (Enp len?An) " < o
We now consider the following actions B(() :
Aflny = |7+ 1)
Aln+ 1y = ’,_'—_'l' ) (4)

A'is called thecreation operatoand its adjoinA is called theannihilation operator
The commutation relation takes the form

A A
A At = AN I
[ ] A AN 1 (5)
whereN is the number operator defined Kin) = n|n).

In a recent paper [6] we have proved that the i—;—? no=0123,.

the solution of the following eigen value equation

_-'31th = (¥ a (6)

-+ forms a complete orthonormal set and

is given by

t

P L
oo = |ee|2) =112 = 1)

A @)

where U(lel?) = o B "I,-.L

We callf, acoherent vectorin I'(I1C):
Now, we observe that

L

P ANSL g AN
AAT = ,ATA =
AN AN

Awgs  Am
We further observe tha *¥  Ax-t ) commutes with batA andAA":

TIME EVOLUTION OF STATE VECTOR

The scheme of th¥-type three-level atomic system consists of two alloweahgitions|a) < |c) and|b) < |c)
where|a); |[b) and|c) are excited state, intermediate state and grouse séspectively. Each interaction has a
different mode of the field. In the rotating-wavgpeoximation, its Hamiltonian is described by

H=Ho+H, (8)
where Hy = wala)(a| + ws|b) (8] + wele)(c| + vATA (h =1) 9)
and Hy = qmAla)(c|+q At|c) (a]+g2A1b) (c|]+g2AT |c) (b] (10)

HereA' andA are, respectively, the creation and annihilatioeraprs for the field of frequengy|i) (i = a; b; ¢) is
the eigen state of the atom with eigen frequeng¢yandg is the corresponding coupling constant. We assumae t
coupling constants to be real throughout the paper.

In the interaction picture, the state vector o$ htiom field coupling system at tirhean be described by
T n TL

"—"f-ltl = [C:J.l: n'——-};"—lrlli.ll:b' :—,\-'+C'Ic'.1| c, 1)

I ik ,Z Uf)hl = T AL | VAL (11)

The Hamiltonian in the interaction picture is given

Ve y]f"'"':}"'!_-“u.:llif.‘ e ”,l_i%(:..j"}q.‘lf.} (a] "‘,"J!‘-‘!ﬂ:"’.-*l'b} le] + ]’}‘_J.'1+ff“iﬂ'jl'f-'} {h; (12)
where
) _,1||,'\\|= 41 }‘ N /‘". T "l, -
y T . W P, \ A = s o o N1 it e 1
-j“l R 1 i ! l‘.\- )‘ N1 ) and ‘_\_r - [.A.-—B W ¥ r )\,'\'.‘ A:_‘., =7 Ly
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Fig. 1 Energy diagram of a vee-configuration thredevel atom interacting with one quantized cavity mde

On solving the Schrodinger equation we get the mpusof motion for probability amplitudes as

I ¥
Can-1=—%MN .I'I )‘f' L 2] EC'f.'.m
‘ll n—I1 (13)
. I A #
Chni= —ifgs I\I'I -\f - faﬂ !('c mn
| “‘n—1 (14)
¥ i Er Fin [ dn i b
Cen = (—im '1“ "-le_ & ll'f—'u.r.—l -i-’.—f.‘f,'zi*,.,-" i ,I:'__:'-' : rf!-.r.l- 1 (15)
where we assume
A — ] __,_.-._.'M_ 5 '-— liely — ,__n_-)-.r.--._l_ A -!-'l.
8" E Wa—ve-NHT =gl = W=l ST =t (16)
Lo
If the atom is initially in the stat't'-‘* (0))
[t24(0)) = cos %h.’,} + sin f—;r-'[""ub} 17)

which means that the atom is in the coherent swséipn state of its eigenkets |and |B, and the field is in the
superposition of the photon number states at timé t

[y (0)) = 3 Frl—=).

(18)
where? - [Fnl” = 1 then the state vector of the total systen= 4t can be described as
N i S .2 -—il —1
|=f-ffu,- = Lnleos §Fn-sla, o) tsinge b, 21
With this initial condition we get
o _ ll."l' 2 . ’ E_I_-r
e n(t) = Bi{e A f2+8)t _ (A )ty 20)
whereB1is given by
B = (5 -vr s o f “_1_-I—r,?2.1|'J ﬁill We W h. 4 ) (23 21)
similarly we get )
,-':l-.m_l pila ja—gye . 5
_, j= =g f'-B",, s S2F,
Can—1(t) ”"I.v A 1[ (AT F2+58) (AT [2—8) + cos -__-_qlr.-u 1 22)
_ '—n r.._,:.._\ _.'_-.'!Ii_L :";‘. (3 — =7
and Com() =~ 5Bl Smrms — “mm=s | | singe Vi (23)

Substituting the values @c:n(t), Ca;n-1(t) andCb;n-1(t) from (20), (22) and (23) respectively in equatidy) we can
obtain the state vector of the system at tinmethe interaction picture.

At this stage we assume tlat 90° and = 0: Also Fn Fn-1: This reduces the state vector (11) with
- i F e G ] P
_Tc,?rif} =}31{|‘: g "r2+"’:”_t, T Pt ..'I]I}

(24)

[ A, ..|-_'_‘\Jl_'-ﬂi'.—-'lf_1 r,é:'J.'l.-"E—-.%:E_l 1"
Canil) = —ia/ 2Bt — St ol (25)

G / _\” :_t.:l-,A ,J"_'|:.":f_1 F‘ (A /22— Y 1

Com-i)= -8 s _’Ue" i T F" (26)

,h,.—b—f (@1+0a)

B = _u__l;,_\—__m 28 _ Y ™!

With ! (91y/ 5, o2y 5B P @7)
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We assume that the atom enters the cavity witlnitiel state

n
[ (D)) — E S 1 yag
00~ 2 g 7+ 70

and after the evolution, for timeg the state vector of the considered atom-fieldesybecomes
o

{tln - y‘;ﬂng_“_I“j}a‘vh;_j

(28)
~ V] n—1 =
n—1 } i3 { bim—1 [f-l J b m} +Cl.",i'.' {fl :I|E'L! ﬁ}] (29)
where from (24), (25) and (26) we have

{'1:.1-”{!-1] — Bl_{‘?_r{& ,.."2+|'.'|’}“

B F:—;m’;z—ﬁm,}
Conalts) =~y BlE gt o 2y —?rlr'ﬂs @0)
By = [my’;f—“l%*'yzx/T”.%)f?iﬁ’: \/%Fnl:mmj
ne1 V2 2,23 (32)
with B2=A"1a1 (2 +dd) A’\”l (33)
o
and

1 .
1 e C.'I__, i £ty )|l——
iy ”; (1) =) (34)

Now after the interaction with the field if we detéhe atom in the ground state Rfter time 1 then effectively
atom absorbs no photon but projects the cavity figio the state

i) = Z(rn tq)]

w\” (35)
where, from (30) Con(ty) = —2Byie™ 7= sin St yith Bgiven by (33)) (36)
If we now consider the passage of a second idérgtom through the cavity[6, 7], then the fieldides the cavity
becomes
[ah(t))

m
D, la, Dy b, + 1. — )
Z{ .-znl ‘/—} ;i nl ‘/"\—”f u|{ \.’/\_u} @37)
On solving, as in the previous case, we see tlasdlsond identical atom transits through the cduityime ¢ and
for g. = @ = g with zero detuning, the system evolves to
[(ta)} = Zu{ DU-?T—l(f‘Q”E‘- —} + -‘r’}b n—1 [fﬂ]l I

n—1

U/}‘ ) 2 = Dr.'.-.fr“-? _];f dl

—— =

") (a8
F, e
DC.NT‘I;}:— '~.m I?A .
Where \’ ‘\ L (39)
1 |
Dy p—1(ts) = ——=C, (1) cos |'2 t
o ]( 2 W‘q S ql-i An—1 e (40)
Dy n—1(t2) (t1) cos 4 | 2—"—gt3
- Fli‘\,/_ Cenl \,‘I )\-”—] 41)
Now, we assumeé\’ =0 to get
(—_‘c:n (t1) = —iF}, sin Gty (42)
From (39), (40), (41) and (42) we now have
: F,
D, n(ta) = ——= sin 3t sin Bty
] . (43)
Du.rr—lHQJ \./_P“ gin ﬂ,h 08 | jf‘-ﬁ
E (44)
Dyni(ta) = —FT, sin 3t cos Gt
nv2 (45)

11
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The state vectol¥(t2)i  (38) describes the time evolutiotine whole atom-field system but we now concaeton
some statistical properties of the single-modedfidlhe field inside the cavity after departing #ezond atom is

obtained by tracing out the atomic part 2(#2) = I'ﬂ"-'(f--zj} {2}l as
ta) =Tr,|a(t
pylta) J:[f( 2 (46)

where we have used the subscript a(f) to denotatmn(field).
This p f (t2) will be of consideration throughout the next gmtto determine the statistical properties offtakl

left into the cavity.
Now, from (38), we get

= AT | n—1 m—1
P{IZJ _ I'l';'.‘.{_!'jj)“{‘(ri)l - thl_“_{ﬂﬂ_ n—1 {t}}Da rrJ—I[f‘Z} . a—"_]} f—m—l|
+Din—1(t2) Dom—1(t2) b, —p=1=) (b, A= | +Den(t2) Demlta)lc, ;—}{c

l."f'b"u—l
+Da n—l“"]‘Dh rr—I[f'jl‘}i”f ; - }{b ;?_l +Da :l?—!”ﬂlr—)r T t? |“—' ’I,rrj }{r ” |
A/ An—1 A/ Am—1 \ e 1 A
+Dp.n—1(t2) Da,m— f}hb FD(& V,—I + Db n—1(t2) De.m(t2) |b L) (e, A
- mn— +D“?i D A f m—1 [
+Dc_1r{i2]-Duz.m—l{tﬂj"- }':r” B | (t2)Lp,m—1(t2) |1‘ ( ﬁ i (47)
From (47) we have
. — n—1 m—1
P_i"{_tQJ = T-I-p”[p h” _ m n [Da ;;._1“-3} a,m—1{t2)] V  Aas H \_f"}"ITI—ll
B o n—1 1 'y i m
+D't:-.:r.-—l{fE]Db.m—l':,f-_. |ij)‘"' }':JT.:?E_J +IJr_-__ﬂl:~f-_?]Dr m“l} J_H || (48)

STATISTICAL PROPERTIES OF THE RADIATION FIELD

In this section we investigate two nonclassicabe&f, namely, sub-Poissonian photon statistics caratirature
squeezing.

Sub-Poissonian Photon Statistics
The simplest criterion [11] for a single-mode rdidia to be a nonclassical state is

(nl2))

{2‘“ =————={n) <0
'.”:: (49)
where (n'®)) = f“:|"1r-“-1-45‘-":' (50)
and (n) = (AT AI9) 51)

Before we proceed for the calculation proper wainbthe following results:
—1 Ap—y, m—1

At S |——)
.-}t.-l_ 1 f“"?]—! 4 -‘)"rl-] (52)
and
A
Al Sy ey B =
\.‘R}'lu }"I 1 \p"r (53)
From (52) and (53) we now have
(AT4) = X, 2Dan-1(t2)Dan-1(t2) 522 + 3, Denltz) Den(ts) 22 (54)
and

I::_f-l_ifli-_‘l_f-i} - E“ ED.-: ;-.g—l”?rD:z rz—llfl])\ +T‘ D 'f‘_l }Dn.ri':fi]%u_., (55)

Incorporating calculations (54) and (55) we get
jI-TJ |

Q‘” = L,“_ﬁ = [u} oE |Fr. 12 sin? Jrlc'u-# .;r) +E;. i |F,, i -ﬁ]%m ﬂfzﬁ] &)
Where
q 1 },
A= _\F | sin® Bt cos® At H= Ko F s Bt sin®
T : }}'!l 3 g: jl | : J'Ill-r.' a
(.":T F,|* sin? 8t cos? i‘r;}L ) — ! B2 ain? @t sin® S A
radl Rz _Zﬂ—gl TR e

12
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If the radiation field [10] is initially in a cohent state,

7 ! ;'{.:".\_:"l

Then Fo(0) = exp(—n /2 ——=
vl

— 11

Hence [Fa(0)]? = exp(~n) .

(57)

(58)

Substituting the value gF(0)|? from (58) and assumingf; =6;; ft, = 6, and finally takingtl =t2 =t so thatd; =

6, =6 with
[
8= ,/2-"" gt
\II "\rl..ly
we get
M= AxB _ Ly Sz T exp(—fi) iy ~sin® # cos? @ +"5_‘ e (i) By uirﬁﬁ»}iﬂffﬂ]
QY = D T Wlla i Lon i el T : (59)
¢ Ar—1 . "!" 9 9 ~ i
A= Z ;i cxpl n) ”I an” @ eos= £ Z )\ l.\.'[.:ll—n“,l—":\ul H(U g
= n—3 : n—2
where
' -:l'l.r-l i ’ .-“\ "
B = Z o OXT L—rr-—»-m @ sin” 6 D =Z ;) {}.p.—rr.F%m *Bsin @
. n—2 n—1

7l

To draw the graph a®" againsigt we assumet =x; = 1 where we choosg ~ ni; (n!)? and f.

Here h)=(1-g"/(1-q); 0<qg<1.

o
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Fig. 2 Mandel'sQM as a function ofgt for a coherent state input andi, ~ n!

0.az

ooz -
o.a1 -
o

—0.01

=y —0D.02
-0.0z2 |
—0.04

—D.05 - S

—p.oe - T

-

/

-0.a7, L —L

—12&

1.5 1.6

—-1Z68.5 [ ™,

—1z7| T

.89 0.3 o.21

092

o932

0.9 o555

at
Fig. 4 Mandel'sQM as a function ofgt for a coherent state input andi, ~ n!
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Squeezing Properties of the Radiation Field
To analyze the squeezing properties of the radidiedd [12-13] we introduce two hermitian quadratoperators

X=A+A Y =—iA— A1) (60)
These two quadrature operators satisfy the commuaot&elation

. o 2 A, T A AT
[V = (ot AN
] Av AN (61)
As a result the quadrature operators in (60) sattief uncertainty relation
: ANy X s
AX)(AY)?) = (T — Ty
;\_-'\." )\‘\?—1 (62)

_ An

A state is said to be squeezed if eitffarX)?) or (AY)?)is less thar{ M e
To review the principle of squeezing, we defineappropriate quadrature operator

Xo=Xcosl+Ysing=Ae* + Ate? (63)
Then we get
AXg = Xy — {Xg) = Ade —ild 4+ &_41'(.:'0 (64)
and hence
(AXp)Y) = ((A4)%)e2 4+ ((AAT)e*® +((AA)(AAN) +((A4T)(AA4)) (65)

After some simplification we get

(AXo)2) = ((4%) = (A)2)e 27 + ((AT") — (AT)2)e** + (4 A1)

H{AAD) = (A) {4T\+f’4*4\—uﬂ)f4‘ (66)
From (66) we get, for operators in their normaless]
wherel = (At2)- (At)2. After observing thatd) = (At)

we get

(: (AXa)? 1) = Lo + (e + 2(AtA) — 2(A)(AT) (67)
Where ¢ = (AT —(A%)2 | After observing th{4) = (A7)
We get

{: (AXg)? o) = (e 2 4 (e 4 2(4FA) — 2|(A1)? (68)
To minimize (68) over whole anglewe observe the following fact: we tal¢ = [<|=*"  to obtain

G + M) = [|Cle™ 2O 4 [¢eR O] = (2] o820+ 2)]min = —20] (g9

Finally, from (68) and (69), we have

Sopt = (: (AXg)? Y = —20(A41) = (a2 + 2041 4) —2)aN2 7
We now calculate ; .

(f‘Hz) _ Z: 3D 1DM_[V iﬂ ) +¥ iy o 5 \f )\n:z o

And

}T D .0, IJ_T‘\H;LDJ a1y m

\ (72)
For the problem under con5|derat|((A,’rA) has been derived in (54) and the other terms aendiy (71) and (72).
Substituting the above expectation values in equdfi0) we obtain an expressionSdptfor initial

L SRR [ 1) |_.'1”‘
coheren! = V=l We draw the plot oBoptas a function ofag| for different values ofit where we

chooset, ~ ni; (n!)? and p]!. Here [n] = (1 - qn)/(1 - q); 0<q < 1.

o -

vi—1

-=| ~ -n\_\_\_x\ 4
..

] rplmnﬂi
1 1
Y [F]
.'{.-

- 5

i s s
a o= ¥ s =
jengl

Fig. 5 Plot for Sopt as a function of|ao| with coherent state input andi, ~ n!
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Fig. 6 Plot for Sopt as a function ofjao| with coherent state input andi, ~ (n!)?
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Fig. 7 Plot for Sopt as a function of|ao| with coherent state input andi, ~ [n]!

CONCLUSION

We have thus investigated the effect of passage thiree level atom one after another successively cavity
containing an one-mode interacting field. In thegass we observed a coherent state loses its cokeamd the
field after interaction becomes a nonclassicalestalich is evident from the study of MandeQsparmeter and
squeezing of the field inside the cavity. Mand@i&@ameter clearly shows a negative portiontfor ni; n!; (n!)%
[n]! which shows nonclassicality of the field insithe cavity.

To further support the nonclassical nature of takl fwe observed the squeezing effect in the Fidri®. 6 and Fig.

7. In Fig. 5 we see that maximum squeezing ocaurgtf= 0:5 whereas in Fig. 6 the maximum squeezing occurs
for gt = 0:5 and in Fig. 7 maximum squeezing occursgbe 0:2. Thus the successive injection of two three-level
atom reduces the coherent field inside the camity & nonclassical state.
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