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ABSTRACT  
 

This paper presents, real-time noise removal filter from, video signals, a joint-prefiltering algorithm. A real-time 

video denoising filter; a great number of, digital video applications inspire the study in renovation or enhancement 

methods to get better the visual quality in the occurrence of noise. Video Block-Matching and 3D joint filter short-

ened as VBM3D, is one of the best recent video denoising filters. We speed up this filter for real-time applications 

by simplifying, the algorithm as well as optimizing the codes, while preserving its good denoising presentation. 
 

Keywords: real-time filtering, pre-filtering, peak signal to noise ratio (PSNR), video block-matching and 3D col-

laborative filter (VBM3D), Wiener Filter 

_____________________________________________________________________________________________ 

INTRODUCTION 
 

Digital Signals, in form of video signals, are just about despoiled by noise, during acquirement footage, dealing out 

and broadcast also depends on the camera parameters. The noise; in video sequence not only despoiled quality but 

also affects the efficiency of additional processing. Therefore, noise deduction from video signals, is main because it 

improves the quality of perceived video sequences and enhances subsequent process in video between the original, 

video signals and restructured video signal.  
 

 

 

 

 

 

 

 

 

 

Fig. 1 Flowchart for denoising video signal [14] 

 
Consider a original, video signal 𝑥(𝑡) ruined by noise 𝑛(𝑡) and the, noisy video can be articulated as: 

𝑦 (𝑡) =  𝑥(𝑡) +  𝑛(𝑡)        (1) 

The task of noise elimination from, video signal is to filter degraded video frames 𝑦(𝑡) so as to minimize the diver-

sity between filtered o/p z(𝑡) and original signal 𝑥(𝑡) the noise represents, refer to the Gaussian noise. In this paper 

contents, we will talk about the Video Block-Matching & 3D (VBM3D) filtering algorithm. In addition, we pro-

posed a real-time implementation of simplified version of VBM3D. 
 

GENERAL SCHEME OF VBM3D 
 

As it was mentioned in earlier that noise filtering techniques that spatio-temporal, domain filtering, transform do-

main filtering and motion information can be can be used together, to improve the filtering performance, but there 

are also some other filtering methods, that exploit correlations using combined filtering strategies. In this paper we 

present VBM3D filtering method which, is one of the best noise removal filter. This technique is based on, highly 

sparsed signal representation in local 3D transform domain. It is an extension of BM3D filtering method for images 

achieve the intention of noise removal performance in terms of both PSNR and Subjective visual superiority. 

 

noise n(t) 

video x(t) denoised z(t) y(t) 
Filter + 
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Fig. 2 Flowchart of VBM3D noise removal algorithm [17] 

 

The general procedure consists, of the two steps. In the first place a noisy video is processed in, raster scan array and 

in the block wise manner. As for each reference block; a 3D array is grouped by stacking blocks, from consecutive 

frames, which are similar to the current processing block, a predictive search-block technique is used, for the group-

ing. Then a 3D transform domain reduction (first step hard-thresholding then in second place Wiener filtering) is 

applied, to each of the grouped 3D array since the estimate of those, obtained blocks are forever overlapped, they are 

aggregated by a weighted average to obtain an intermediate estimate. In second place the intermediate estimate, 

from the first step is used together, with a noisy video for; grouping and applying 3D collaborative, empirical filter-

ing. 
 

The VBM3D algorithm has three important concepts like grouping, collaborative filtering and aggregation. 
 

Grouping 

The grouping is referring to the conception of similar d-dimensional fragments, of a given signal into 𝑑 + 1 

,dimensional data structure. In case of video signal the fragments can be any of the 2D blocks; and a group is a 3D 

array formed, by stacking together alike blocks from successive frames. Similarity between blocks is computed us-

ing the 𝑙2 ,norm of the difference between two blocks. In order to achieve resourceful grouping, a predictive search 

block matching is used, to resourcefully find similar blocks. The main idea of this method, is to perform a full search 

in a 𝑁𝑠 ×  𝑁𝑠 window, in current frame to get the 𝑁𝐵 ,best matching blocks within a smaller window size, of 𝑁𝑃𝑅  ×

 𝑁𝑃𝑅 (𝑁𝑃𝑅  ≪  𝑁𝑆). The window centers at the same position of the previous block. The benefit of grouping is to 

allow the use of high dimensional filtering, which utilizes the prospective similarity, between grouped blocks. 
 

Collaborative filtering  

Once a 3D array is obtained, from grouping, collaborative filtering can be used as second place exploit both spatial 

correlation inside single block and the correlation between grouped blocks. Then it is followed by reduction in the 

transform domain. The collaborative filtering is executed as following steps: 

 execute a linear 3D transform, to the grouping 

 Shrink transformed coefficients, by hard thresholding or Wiener filtering, to attenuate the noise 

 Invert linear transform, to obtain estimates of grouped blocks 

The advantage of collaborative filtering is to utilize both kinds of correlations, to produce a sparse demonstration of 

the group, and sparsity is desirable, for effective reduction in noise shrinking. 
 

Aggregation 

In general, estimates, of denoised 3D groups can be overlapped. In other terms, there can be various estimates ob-

tained from dissimilar filtered 3D groups but have precisely the same coordinates. This leads to an over-complete 

demonstration of the original video, aggregation is carried out, to produce estimates of filtered 3D groups by a 

weighted averaging with adaptive weights. 
 

ALGORITHM 

In VBM3D filtering we believe a noisy video as: 

𝑧(𝑥) =  𝑦(𝑥) +  𝑛(𝑥), 𝑥 ∈ 𝑋 ⊂  ℤ3                                          (2) 

Where y is the exact video signal, 𝑛(∙)~ (0, 𝜎2) is zero mean gausain noise, with variance 𝜎2, 𝜎 is assumed a prior 

known value, 𝑥 is a 3D coordinate that belongs to the 3D spatio-temporial domain which refer  𝑋 ⊂  ℤ3, and t can 

be expessed as: 

𝑥 = [𝑥
1

, 𝑥2, 𝑡].                 (3) 
 

The first and second coordinates are the 2D spatial coordinates, in one video frame, and the third coordinate t ⊂  ℤ, 

which shows the frame number. As for VBM3d algorithm. It can be divided in two steps as follow: 
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Step 1. Generate a basic estimate, using grouping and collaborative hard-thresholding. Each reference block, 𝑍𝑥𝑅 

with 𝑥𝑅  ∈ 𝑋 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑁ℎ𝑡  ×  𝑁ℎ𝑡 is also taken from both the horizontal and vertical directions with a step of length 

of 𝑁𝑠𝑡𝑒𝑝. VBM3D groups a set of similar blocks, by using predictive search Block-Matching(PS-BM), 

𝑆𝑥𝑅
ℎ𝑡 = 𝑃𝑆 − 𝐵𝑀 (𝑍𝑥𝑅)                             (4) 

Where 𝑍𝑥𝑅 indicates a blocks, whose upper left curve is at 𝑥𝑅,  𝑆𝑥𝑅
ℎ𝑡  𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑖𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑠 𝑓𝑜𝑟 𝑍𝑥𝑅. All these similar 

blocks are grouped to form a set: 

𝑍𝑆𝑥𝑅
ℎ𝑡 = {𝑍𝑥𝑅 ∶ 𝑥 ∈   𝑆𝑥𝑅

ℎ𝑡 }.                             (5) 

Then a collaborative hard-thresholding ,is carried out within the threshold 𝜆3𝐷𝜎  to create an estimates of the set 𝑍𝑆𝑥𝑅
ℎ𝑡  

:  𝑌̂𝑆𝑥𝑅
ℎ𝑡 =  𝑇3𝐷

−1 (𝐻𝐴𝑅𝐷 − 𝑇𝐻𝑅(𝑇3𝐷(𝑍𝑆𝑥𝑅
ℎ𝑡 ), 𝜆3𝐷𝜎))              (6) 

Where 𝑌̂𝑆𝑥𝑅
ℎ𝑡  is a set with filtered blocks ans can be expressed as: 

𝑌̂𝑆𝑥𝑅
ℎ𝑡 =  {𝑌̂𝑥

𝑥𝑅
∶   𝑥 ∈   𝑆𝑥𝑅

ℎ𝑡 }                                           (7) 

After the essential estimate  𝑌̂
𝑏𝑎𝑠𝑖𝑐

 is calculated; by aggregation of block-wise estimates 𝑌̂𝑥

𝑥𝑅
 according to the  

formula,  𝑌̂
𝑏𝑎𝑠𝑖𝑐

=  
∑𝑥𝑅∈𝑋∑

𝑥∈𝑆𝑥𝑅
ℎ𝑡 𝑤𝑥𝑅

ℎ𝑡 𝑌̂𝑥
ℎ𝑡,𝑥𝑅

∑𝑥𝑅∈𝑋∑
𝑥∈𝑆𝑥𝑅

ℎ𝑡 𝑤𝑥𝑅
ℎ𝑡 𝑋𝑥

                                           (8) 

Where 𝑋𝑥: 𝑋 →  {0, 1} is the characterstics function, of the square support, of a block situated at 𝑥 ∈ 𝑋, and 𝑤𝑥𝑅
ℎ𝑡  is 

the influence for the current block. This weight 𝑤𝑥𝑅
ℎ𝑡  is obtained by: 

𝑤𝑥𝑅
ℎ𝑡 =  

1

𝜎2𝑁ℎ𝑎𝑟
𝑥𝑅 𝑊2𝐷                              (9) 

Where 𝑁ℎ𝑎𝑟
𝑥𝑅  is the quantity of non zero coefficients after hard-thresholding 𝑇3𝐷(𝑍𝑆𝑥𝑅

ℎ𝑡 ), 𝑎𝑛𝑑 𝑁ℎ𝑎𝑟
𝑥𝑅 > 0 as the DC 

value is constantly reserved, ensuring that division by zero,  not at all happens in aggregation, and 𝑊2𝐷 is the 2D 

Kaiser window of size 𝑁ℎ𝑡 ×  𝑁ℎ𝑡 which is used, for the dropping border effect. 
 

Step 2. Obtain the absolute estimation by grouping within the essential estimate and collaborative Wiener filtering, 

that uses of the spectra of the related groups from the necessary estimates. For the each block  

𝑌̂𝑥𝑅

𝑏𝑎𝑠𝑖𝑐
 𝑤𝑖𝑡ℎ𝑖𝑛  𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑁𝑤𝑖𝑒 ×  𝑁𝑤𝑖𝑒, algorithm applies analytical search BM 

𝑆𝑥𝑅
𝑤𝑖𝑒 =   𝑃𝑆 − 𝐵𝑀(𝑌̂𝑥𝑅

𝑏𝑎𝑠𝑖𝑐
)                                       (10) 

And based, on the set 𝑆𝑥𝑅
𝑤𝑖𝑒, two 3D arrays are produced: 

𝑌̂𝑆𝑥𝑅
𝑤𝑖𝑒

𝑏𝑎𝑠𝑖𝑐
= {𝑌̂𝑥𝑅

𝑏𝑎𝑠𝑖𝑐
∶ 𝑥 ∈  𝑆𝑥𝑅

𝑤𝑖𝑒}                                        (11) 

𝑍𝑆𝑥𝑅
𝑤𝑖𝑒 = { 𝑍𝑥 ∶ 𝑥 ∈  𝑆𝑥𝑅

𝑤𝑖𝑒}                                                     (12) 

Then the collaborative, filtering is performed in second place by, an empirical Wiener filtering and it is shown by as 

of,  𝑌̂𝑆𝑥𝑅
𝑤𝑖𝑒 =  𝑇3𝐷

−1(𝑇3𝐷(𝑍𝑆𝑥𝑅
𝑤𝑖𝑒)

(𝑇3𝐷(𝑌̂𝑥𝑅
𝑏𝑎𝑠𝑖𝑐

))
2

(𝑇3𝐷(𝑌̂𝑥𝑅
𝑏𝑎𝑠𝑖𝑐

))
2

+ 𝜎2
                                       (13) 

The absolute estimate (𝑌̂𝑓𝑖𝑛𝑎𝑙) is formed by aggregation of those of overlapped estimates is given by: 

𝑌̂
𝑓𝑖𝑛𝑎𝑙

=   
∑𝑥𝑅∈𝑋∑

𝑥∈𝑆𝑥𝑅
𝑤𝑖𝑒𝑤𝑥𝑅

𝑤𝑖𝑒𝑌̂𝑥
𝑤𝑒,𝑥𝑅

∑𝑥𝑅∈𝑋∑
𝑥∈𝑆𝑥𝑅

𝑤𝑖𝑒𝑤𝑥𝑅
𝑤𝑖𝑒𝑋𝑥

                                         (14) 

With the weight of  

𝑤𝑥𝑅
𝑤𝑖𝑒 =  𝜎−2 ‖

(𝑇3𝐷(𝑌̂𝑥𝑅
𝑏𝑎𝑠𝑖𝑐

))
2

(𝑇3𝐷(𝑌̂𝑥𝑅
𝑏𝑎𝑠𝑖𝑐

))
2

+ 𝜎2
‖

2

−2

𝑊2𝐷                          (15) 

Where ‖∙ ‖2 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑙2 standard, and 𝑊2𝐷 is 2D Kaiser window of size 𝑁𝑤𝑖𝑒 ×  𝑁𝑤𝑖𝑒. 

 

COMPLEXITY ANALYSIS 

 

In this study, complication is calculated based on the number of essential arithmetic operations, however additional 

factors, such as memory utilization and the number of the memory access have not been measured. The complica-

tion of VBM3D (𝐶𝑉𝐵𝑀3𝐷) and the metaphors of the parameters in the subsequent equations are exposed in table [1] 

 

𝐶𝑉𝐵𝑀3𝐷 =  𝐶𝑉𝐵𝑀3𝐷
ℎ𝑡 +  𝐶𝑉𝐵𝑀3𝐷

𝑤𝑖𝑒𝑛𝑒𝑟                                         (16) 
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Hard-thresholding stage, for the each processed block, at a large amount of M similar blocks are the extracted within 

the search-window of the size 𝑁𝑠 ×  𝑁𝑠 and they stacked together as a cluster then a 3D transform and hard-

thresholding are of the applied to the 3D group. In conclusion the essential estimate is obtained by aggregating of 

the inversed coefficients. Thus the complication of hard-thresholding stage can be articulated as: 

𝐶𝑉𝐵𝑀3𝐷
ℎ𝑡 = 𝑇

𝑛

𝑁𝑠𝑡𝑒𝑝
2  ((𝑁𝑠

2 + 𝑧𝑁𝐵𝑁𝑃𝑅
2 )3𝑁2 +  2(2𝑀𝐶(𝑁,𝑁,𝑁) +  𝐶𝑀,𝑀,𝑁2) +  𝑀𝑁2)                (17) 

Wiener-filtering stage, the most processes are of the same as, those in the hard- thresholding stage, but two groups in 

its place of one require to be transformed. Element-wise multiplications are applied for the obtaining coefficients’ 

reduction, which is involves a sets of weights in calculation and requires 6 arithmetic per pixel: 

𝐶𝑉𝐵𝑀3𝐷
𝑤𝑖𝑒𝑛𝑒𝑟 =  𝑇

𝑛

𝑁𝑠𝑡𝑒𝑝
2  ((𝑁𝑠

2 + 𝑧𝑁𝐵𝑁𝑃𝑅
2 )3𝑁2 +  4(2𝑀𝐶(𝑁,𝑁,𝑁) +  𝐶𝑀,𝑀,𝑁2) +  6𝑀𝑁2 +  𝑀𝑁2)                                    (18) 

 
Table -1 Parameters Concerned in the VBM3D Complication Analysis 

 

Parameter Description 

T Total number of frames in the video signal 

N Numbers of the pixel per frame 

N 2D block length 

Z Temporal search window length in group 

𝑁𝑆 Spatial search window length 

𝑁𝑠𝑡𝑒𝑝 Sliding pace to process every next reference block 

M Total number of the blocks in grouped 3D array 

𝐶(𝑎,𝑏,𝑐) Numeric process is required by a multiplication of between two matrices of size 𝑎 × 𝑏 𝑎𝑛𝑑 𝑏 × 𝑐 

 

PRACTICAL RESULTS 

 

In this section, we present and discuss some experimental results VBM3D technique and the results obtained of 

VBM3D filtering on two standard ballrooms (352 x 288) and vassar (640 x 480) degraded by the Gaussian noise 

with the variance of 202 are revealed in table [2] comparisons of subjective visual quality between the original and 

noisy and the denoised frames are illustrated in figure [3]. 

 

On one hand, the result reflect that the VBM3D filter achieves the state of the art of denoising performance in the 

terms of both PSNR and the subjective video superiority. On other hand due to the high complication of the algo-

rithm, the pace at which present execution of VBM3D executes make it the hard to meet the real time necessities. 

We define the real time requirements as of the filter has at least 25 fps for the processing frames with the resolution 

of 640 x 480 under the computer platform with Intel Core i5 2.3GHz and 4GB of RAM. However, the speed of the 

present execution is only 1.01 fps for the vassar 640 x 480. To solve this problem, we simplify the VBM3D algo-

rithm and also propose a fast integer execution. 

 
Table -2 Performance of the VBM3D along with different test of the video sequences corrupted by the Gaussian noise 𝝈 = 𝟐𝟎 in the 

computer Intel Core i5 2.3GHz and 4GB of RAM 
 

𝜎 = 20 Foreman vassar 

Resolution 352 x 288 680 x 480 

Noisy (dB) 22.10 22.10 

Denoised (dB) 34.42 36.25 

Speed 3.46 1.01 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig. 3 Examples of VBM3D filtering: The two test videos vassar and ballroom are already being degraded by Gaussian noise signal with 

𝝈 = 𝟐𝟎, and (a),(c),(e) in that order are original, noisy and the denoised frame for vassar and (b),(d),(f), respectively are original, noisy 

and the denoised frames for the ballroom 

 

REAL-TIME IMPLEMENTATION OF VBM3D 

 

In this optimizing task two approaches are used - 

 Simplify VBM3Dfilter by by means of only the most in high-ranking parts for noise attenuation. 

 Propose a fast integer execution of the simplified VBM3D. 
 

In the very first approach, we want to find which parts of the VBM3D are most prominent for noise reduction. The 

VBM3D filter can be further divided into two steps, and each of them step has numerous sub-steps as offered pre-

viously. Some experiments are carried out to find the noise reduction ability of each sub-step. We \turn off in one 

sub-step and \turn on" in all the other parts of the VBM3D filter, then we record the number of filter performance. 

After experiments, we get that temporal correlation also contributes more than the spatial correlation in noise reduc-

tion. As a result, we choose only to use of the temporal search, the temporal transform and the hard-thresholding in 

the first step, but to remove the Wiener filtering part due to its high complication. At the same time, we are 

chainging the values of two parameters in the proposed filter settings. One of them is the number of the temporal 

searching frames, and reducing the range from 9 to 5. In other words, it only finds the current frame, of the two 

previous and the two following frames. The other is N2 (maximum length of the 3-dimension transform), using 4 in 

its place of 8. By doing this, the computational complication of VBM3D is significantly decreased. The comparison 

of the standard VBM3D and the simplified VBM3D algorithm is shown in the Table -3. 

 

Sequences of the two video vassar (640 x 480) and ballroom (640 x 480) are used in our experiments, and the both 

of these two videos are despoiled by Gaussian noise with the different variances. The assessment of performance 

between the standard VBM3D and the simplified VBM3D is shown in Table 4. As we can see from Table 4, for the 

small sigma value, such as 5, even though performance of the simplified VBM3D is not as good as of the standard 

VBM3D caused by simplification of the algorithm, and the simplified VBM3D still has one of the good denoising 

capacity. This is because human eyes generally cannot tell the diversity among images which have PSNR values 

above 37dB. As the increments of the sigma values, the simplified VBM3D performs worse than the standard 

VBM3D. But in common the simplified VBM3D improves the PSNR values of the noisy video signals by 4 to 6 dB. 
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Moreover, it is significant to note, that the rate of the simplified VBM3D is about the 7 times faster than the speed of 

the standard VBM3D. However, it is still not the fast enough for the real-time applications since it needs to have at 

least the 25 fps. Therefore, we continue to speed up the simplified VBM3D by using second approach. 
 

In this second approach, an integer implementation of simplified VBM3D is proposed in this approach. The algo-

rithm comparison of proposed implementation and of the simplified VBM3D is shown in Table -5. The proposed 

implementation has the numerous improvements compared to the simplified VBM3D, and they are shown below. 
 

1. In place of float type, integer type is used for all the variables. 

2. Instead of the buffer whole video, proposed implementation only buffers for the 4 frames. 

3. Instead of full search algo, we propose to use the modified method of the diamond search and the algorithm is 

    described in the detail in next section. 

4. Reduce the number of temporal-searching frames from 5 to 4, so all the blocks are in grouped from searched  

    frames are utilized in Haar transform, for reducing the computational complexity. 
 

Table -3 Comparison of the Standard VBM3D and the Simplified VBM3D Algorithm 
 

Filters Standard VBM3D Simplified VBM3D 

Step - 1 

Spatial Search + - 

Spatial Transform + - 

Temporal Search + + 

Temporal Transform + + 

Hard Thresholding + + 

Step - 2 

Spatial Search + - 

Spatial Transform + - 

Temporal Search + - 

Temporal Transform + - 

Wiener Filtering + - 

Temporal Searching Frames 9 5 

N2(Maximum length of the haar transform) 8 4 

 

Table -4 Comparison of performance between the standard VBM3D and the simplified VBM3D for the denoising video sequences of 

vassar and ballroom which are the degraded by Gaussian noise with the different variances, in the computer platform with Intel Core i5 

2.3GHz and 4 GB of RAM 
 

PSNR Resolution 640x480Number of frames 250 Standard VBM3D Simplified VBM3D 

5/34.13 

vassar 
Denoised (dB) 40.74 38.38 

Speed (fps) 1.09 7.22 

ballroom 
Denoised (dB) 41.44 37.74 

Speed (fps) 1.11 7.29 

10/28.12 

vassar 
Denoised (dB) 38.21 33.67 

Speed (fps) 1.14 7.67 

ballroom 
Denoised (dB) 38.69 33.15 

Speed (fps) 1.09 7.22 

15/24.63 

vassar 
Denoised (dB) 36.57 30.23 

Speed (fps) 1.10 7.28 

ballroom 
Denoised (dB) 36.71 29.97 

Speed (fps) 1.13 7.12 

20/22.18 

vassar 
Denoised (dB) 35.32 27.85 

Speed (fps) 1.13 7.28 

ballroom 
Denoised (dB) 35.20 27.24 

Speed (fps) 1.15 7.01 
 

Table -5 Algorithm Comparison for the Proposed Implementation and a Simplified VBM3D 
 

 Proposed Implementation Simplified VBM3D 

Data Type integer Float 

Memory Buffer only 4 frames Buffer whole video 

Block Matching Modified diamond search Full search 

Temporal search window 4 5 

 

MODIFIED DIAMOND SEARCH ALGORITHM 
 

Step -1 

Centre a large diamond search pattern (LDSP) is at a predefined search window, and search the 5 check blocks in a 

pre-defined order: centre, horizontal and the vertical. The first check block, with the sum squared difference has less 

than threshold is the final solution. If in the sum squared differences of all the check blocks are greater than the 

threshold, and of the minimum block distortion point, and the abbreviated as MBD, is found to be at in the centre, 

jump to Step 3; or else, go to Step 2. 
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Step -2 

Construct a LDSP centred on the position of MBD point from the previous search. Search within the 5 check blocks 

with a pre-defined order: centre, horizontal and vertical. This first check block, with the sum squared difference has 

less than the threshold, in the final solution. If the sum squared differences of all the check blocks are greater than 

threshold, and at the minimum block distortion point, skip to Step 3; or else, repeat this step. 

 

Step -3 

Switch this search pattern from the large pattern to the small diamond search pattern (SDSP) and create a SDSP at 

the position of MBD point from the previous search. At the minimum block distortion among check the blocks is the 

final solution 

 

Table -6 illustrates the performance of comparisons of the proposed implementation and of the simplified VBM3D. 

From the results, we got that the proposed implementation is of about the 4 to 5 time faster than the simplified 

VBM3D version. The proposed filter has above 30 fps, which meets the necessities for real-time video denoising 

applications. also, for video vassar which has the static background, the pro-posed implementation outperforms in 

the simplified VBM3D in terms of the PSNR values, and with the PSNR improvement up to the 0.7 dB. This is 

mainly as a result of the motion search method which used in our algorithm. The modified diamond search algo-

rithm gives us a strong preference to the position of the orientation block, which produces more than precise calcula-

tion for the static background. As a result of, our proposed implementation is the much faster than the simplified 

VBM3D, and the outperforms is the simplified VBM3D for videos with the static background, just as in the video 

conference applications. 
 

Table -6 Performance comparison between the standard VBM3D, and the simplified VBM3D and the proposed implementation for the 

denoising video sequences of the vassar and the ballroom which are being corrupted by Gaussian noise with the different variances, in 

the computer platform with Intel Core i5 2.3GHz and 4GB of RAM 
 

PSNR 
Resolution 640x480 

Number of frames 250 
Standard VBM3D 

Simplified 

VBM3D 

Proposed imple-

mentation 

5/34.13 

vassar 
Denoised (dB) 40.74 38.38 38.41 

Speed (fps) 1.09 7.22 34.11 

ballroom 
Denoised (dB) 41.44 37.74 37.73 

Speed (fps) 1.11 7.29 34.40 

10/28.12 

vassar 
Denoised (dB) 38.21 33.67 33.92 

Speed (fps) 1.14 7.67 34.47 

ballroom 
Denoised (dB) 38.69 33.15 32.78 

Speed (fps) 1.09 7.22 30.49 

15/24.63 

vassar 
Denoised (dB) 36.57 30.23 30.94 

Speed (fps) 1.10 7.28 34.25 

ballroom 
Denoised (dB) 36.71 29.97 29.82 

Speed (fps) 1.13 7.12 34.94 

20/22.18 

vassar 
Denoised (dB) 35.32 27.85 28.37 

Speed (fps) 1.13 7.28 33.94 

ballroom 
Denoised (dB) 35.20 27.24 27.80 

Speed (fps) 1.15 7.01 34.54 

 

CONCLUSION 
 

In this part, we have a general form of review of the video denoising algorithms and VBM3D. VBM3D has an ex-

cellent filtering ability, but the current implementation does not suit for the real-time implementations. In order to 

accelerate the VBM3D and conserve good filtering performance, and we simplify VBM3D algorithm and implement 

it in the real-time. From our experiments, we have concluded that even though that the proposed implementation has 

some PSNR degradation as compared with the standard VBM3D, it still has the good denoising performance, with 

PSNR perfection of around 4 dB over the noisy videos. Moreover, it is very important to note that the proposed new 

implementation is the 30 times faster than the previous standard VBM3D, and it can be used in the real-time video 

applications. 
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