ABSTRACT
This Research thrives to evolve a technique to estimate kinetic parameters of naphtha lump-feed. Steady state material and energy balance models were develop from first principles on the mole fractions of feeds and temperature. The research focused to minimize the objective function S used to search for optimum kinetic parameters of the feeds. The achieved optimum parameters were used to solve for optimum yields of the products. The results of the activation energies are and Arrhenius constants are stated explicitly as E_i 354950 KJ/Kmol; 173566 KJ/Kmol; 395001KJ/Kmol and 394005 KJ/Kmol, and A_i: 3.5445E12, 1.30E08, 3.212E18 and 5.414E18 of P, N, A & G species respectively. The optimal E_i-values and A_i- values gave calculated k_i-values of 5.63E-12; 2.46E-04; 1.76E-08 and 1.56E-08 of P, N, A & G. The results compared with the plant data gave deviations of: E_i 0.424%, 0.535%, 0.0157% and 0.0951%; A_i 15%, 9%, 30% and 18%, and k_i 0.570%, 0.361%, 0.650% and 12% for the P, N, A, & G respectively. Other deviations compared with optimal yields, steady state yields and literature data gave results which show that the research work is of importance and best fit for estimating kinetic parameters of any hydrocarbon feeds.

Key words: Kinetic Parameters, Optimization, Activation Energies, Rate constant, objectives function, regression analysis

1. INTRODUCTION
Constrain optimization is the process of optimizing an objective function with respect to some variables in the presence of constraints on those functions or energy function (here is functions of activation energies in 5-lump kinetic models) which is to be minimized or a reward function or utility function to be maximized [1]. Constraints can be either hard constraints which set conditions for the variables that are required to be satisfied, or soft constraints which have some variable values that are penalized in the objective function if, and based on the extent that, the conditions on the variables are not satisfied [2]. Optimization is the use of specific methods to determine the most cost effective and efficient solution to a problem or design for a process. The technique is one of the major quantitative tools in industrial decision making. Optimization pervades the field of science engineering, and business. Optimization in chemical engineering process design or reactor design and models, is concerned with selecting the best among the entire sect by efficient quantitative methods. Computers and associated software make the necessary computations feasible and cost-effective.

Kinetic parameters estimation is paramount because most Chemical reactions results in semi or final products formation which are essential for consumption. Industries that produce these products take into consideration the easy, cheap and best routes to maximize profits and satisfy consumers. The rate expressions of most of the reactions which are both/either simple and or complex reactions have major challenges as how the rate constants (forward and backward) can be gotten or calculated. Often activation energies and pre-exponential factors are the parameters to be estimated as they are the driving force of most successful reactions that give best yields. Thus this research considers the estimation of activation energies and pre-exponential factors of naphtha reforming reactor using lumped kinetic scheme.

The aim of this research is to estimate the kinetic parameters of the Naphtha Reforming reactor using lumped kinetic scheme.
The research is useful as: to achieve better route of optimization of kinetic parameters of most complex or simple reactions processes taking place in Refineries and Pharmaceutical industries.

Several authors have carried out estimation of kinetic parameters. Wordu [3] researched on dynamic simulation of industrial reformer (DSIRR) in which the research considers the estimation of kinetic parameters of Nigeria Reformer Naphtha feed. Erick & Gustavo [4] researched on estimation of activation Energies using hydrosulphurization of middle distillates. The Hydrosulphurization (HDS) of different petroleum distillates was carried out in a batch reactor using commercial cobalt-molybdenum (CoMo) catalyst and reaction condition similar to industrial practice.

Dolan, et al, [5] researched on the use of nonlinear regression technique to estimate kinetic parameters. The non linear models developed were numerically integrated using mat lab and which were further subjected to regression analysis to compute the kinetic rate constant and activation energies. Periago, et al [6] carried out the study of kinetic parameters of Bacillus stearothermophilus spores under isothermal and non-isothermal heating conditions. The result indicates that it is easy and clearer to use 90% confidence interval of nonlinear regression to obtain good estimate of kinetic parameters (activation bores for process, 7°C and 8°C were applicable for isothermal and non isothermal conditions to achieve the estimates).

Mishra, et al. [7] researched on the bootstrap confidence intervals for the kinetic parameters of degradation of anthocyannins in grape Pomace, where rate constant, kr and activation energy (Ea) for the degradation process were estimated at 113.9°C with initials kr = 0.0606/min and Ea = 65.32KJ/mol and gave values asymptotic confidence levels and bootstrap confidence of 95% respectively for 113.9°C and Ea to be 0.052 and 0.068, and 23.3 and 102.7°C and 0.053 and 0.066, and 49.08°C and 104.9°C respectively.

Sulaiman, et al (2013) researched on the simultaneous and sequential estimation of kinetic parameters in a starch viscosity model. After studying the gelatinizing behavior of native corn starch, the kinetic parameters were estimated (k_r & Ea) both by ordinary least squares and the sequential method with standard error of 11%.

Greiby, et al. (2016) carried out estimation of kinetic parameters of anthrocyanin degradation in cherry Pomace using inverse method for non-isothermal heating. k and Ea -values at 115.8°C were respectively 0.0129 per min. and 75.7KJ/mol at 70% moisture content. This estimation was helpful in dynamic process design.

Mishra, et al [8] researched on the application of results for optimal experimental design of non linear models to enhance accuracy of parameters estimations.

Hofmanin, H. [9] researched on kinetic data analysis and parameter estimation which Ea and Arrhenius constant were determined and used for reactor model.

Dirion, et al [10] researched on Kinetic Parameter Estimation from Thermogravimetric Analysis (TGA). The two tools applied were the nonlinear parameter estimation procedure for identifying parameters in non linear dynamical models and computation of TGA required in order to identify the best kinetic parameters with high statistical reliability.

Sulaiman, [11] researched on Estimating the Kinetic Parameters of a starch viscosity model and with error of 12%. The K_g (rate constant) and activation Energy of gelatinization (E_g) were estimated using non linear regression analysed.

Perry, et al, [12] worked on the estimation of kinetic parameters for both linear and non linear rate expressions such as Langmuir – Hinselwood rate expression. Minimization of the sum of square of residuals does not result in a closed form for nonlinear parameter estimates as for linear case; rather it requires an iterative numerical solution, and having a reasonable initial estimate of the parameter values and feasible ranges are critical for success. The nonlinear regression procedure typically involves a steepest descent optimization search combined with Newton’s linearization method when minimum is approached, enhancing the convergence speed [13-14].

Hirmajer, et al [15] developed a useful regression analysis on parameters estimation of activation energies. Broke, et al [16] brought to life a solver named non-linear programmer (NLP) which gave solutions on non-linear programming problems and be used to minimize the sum of squares of residuals errors.

Zamontry, P. & Belohlav, L. [17] produced a vital regression analysis software package (ERA). Its input data matrix was limited to 20 independent variables (20 responses) with almost 256 experimental points in a set of response and the models parameters to be estimated was limited to 15.

Appropriate steps was taken to achieved the research goal: to study the complex series-parallel reactions of the Naphtha lumps feed and hence develop the various rate expressions models for the Paraffins, Naphthenes, Aromatics & Gas (Naphtha lump feeds), to develop steady state models (mole fractions and temperature models) for the lumped kinetic scheme of industrial reformer using material and energy balance principles, subject the steady state results obtained from the simulation of the steady state models to optimization of activation energies, hence kinetic parameters of the various species of Naphtha lumps feed using regression analysis procedures, to obtain the optimal yields (i.e. mole fractions and temperature values of various species of Naphtha lumps feeds) from the optimal kinetic parameters.
obtained from the optimization techniques, and to compare the optimal yields with steady states yields and literature data.

2. MATERIALS AND METHODS

Materials
Materials for the research are Naptha lump feeds, Optimization tool (single point Regression analysis tool and Marquardt-Levenberg algorithm), F-test table, and principle of conservation of mass and energy.

Methods
The derivation of the reactor block model for this research maintains the following constraints (assumptions): There is continuous catalyst regeneration in the regenerator which keeps the catalyst at 100% efficiency; the reactor is stacked tabular plug flow reactor; models are derived from first principles of material and energy balance maintaining steady state process conditions; the reactor feed are low fractions Hydrocarbons ranging from C_6 – C_8; models maintain a lumping scheme chemistry of the paraffins, Aromatics and Naphthenes; Hydrogen recycle shall equally maintained and the hydrogen seen in the reaction scheme is excess and serve as a catalyst for the reactions process, hence will not be used for the rate of reaction determination procedures.

Fundamental Material Balance

\[
\frac{dy_i}{dz} + \frac{1}{v_o} \left(-r_i \right) = 0
\]

(1)

\[
u_f \frac{dz}{dx} + \frac{1}{v_o} \left(-r_i \right) = 0
\]

(2)

Where:

\(u_f \) = superficial velocity entering the flow reactor; m/s
\(v_o \) = Volumetric flow rate; m³/s
\(A \) = Cross sectional area of the reactor; m²
\(P \) = Total pressure of the system; atm
\(R \) = Ideal gas constant; KJ/kmol.K
\(T \) = Absolute Temperature; K
\(C_{i,o} \) = Initial concentration of species; mol/L
\(C_i \) = Final concentration of species; mol/L
\(C \) = Total concentration, mol/L
\(P_i \) = Partial pressure of species, i; atm
\(r_i \) = Rate of reaction of species, i; mol/s.L
\(i \) = Naphthenes, Paraffins, Aromatics, Gases

Fig. 1 Schematics Ideal flow with mole fraction, Partial Pressure and Concentration varying along the differential Length of the reactor

The steady state material models was derived from first principle using equation 1

\[
\frac{dz}{dx} + \frac{1}{v_o} \left(-r_i \right) = 0
\]

(1)
Kinetic Model Development
Development of the kinetic lumps: (Naphtha, Paraffins, Aromatics and Gas). The reaction follows lumping scheme kinetics shown in Figure 2.

\[
\begin{align*}
&\text{P} & \quad k_{f_1} \quad (k_1) \\
&\text{N + H}_2 & \quad k_{r_1} \quad (k_2) \\
&\text{G} & \quad (k_5) \\
&\text{A + 3H}_2 & \quad k_{r_3} \quad (k_4) \\
&\text{N} & \quad k_{f_2} \quad (k_3) \\
\end{align*}
\]

Fig. 2 Composite five (5) –Lump Reforming Reactions [18]
The rate expressions for the composite five (5) lumps kinetics were stoichiometrically and by mass conservation principle developed to give the rates of the species of the naphtha lump feeds.

\[-r_N = \left(k_{f_2} - \frac{k_{f_2}}{k_{f_2}} + k_6 \right) P y_N - \left(\frac{k_{f_2}}{k_{f_1}} + k_f \right) P y_p \] (3)

\[-r_A = \frac{dy_A}{d\tau} = -k_{r_2} P y_N + k_{r_2} P y_N = \left(\frac{k_{f_2}}{k_{f_2}} - k_{f_2} \right) P y_N \] (4)

\[-r_P = \frac{dy_P}{d\tau} = \frac{k_{r_1}}{k_{r_1}} - k_{r_1} + k_5 \right) P y_p \] (5)

\[-r_G = \frac{dy_G}{d\tau} = -k_5 P y_p - k_6 P y_N \] (6)

Where:

- \(y_N\) = mole fraction of Naphthenes, mol
- \(y_A\) = mole fraction of Aromatics; mol
- \(y_P\) = mole fraction of paraffins, mol
- \(r_i\) = rate of reaction for species, \(i = (N, A, P, & G); \) mol/s

Energy Balance (Temperature Model Development)

Fig. 3 Sketch of a cross-section of PFR showing temperature variation along the flow reactor (in the z-direction)
The Energy balance equation is stated as thus:
Mathematical Analysis of equation (7) at steady-state gives the temperature model
\[
\frac{dT}{dz} + \frac{1}{u_f \rho C_p} \left((-r_N)\Delta H_N + (-r_H)\Delta H_H + (-r_P)\Delta H_P + (-r_G)\Delta H_G \right) = 0
\]
(8)

Where:
- \(\rho \) = density, Kg/m³
- \(C_p \) = Specific heat capacity KJ/Kg.K
- \(\Delta H_i \) = Heat of reaction of species, i, KJ/Kmol
- \(i = (N, A, P \text{ and } G) \)
- \(u_f = \text{Superficial velocity, m/s} \)

Parameter Estimation

Optimization Procedures for Estimation of kinetic parameters of Naphtha lump feeds (P, N, A, & G)

The single point regression analysis search is applied for the purpose of estimation of activation energies and pre-exponential factor of the various species (P, N, A, & G) of the Naphtha lump feeds. Below steps are necessary for the optimization procedures:

1. Steady state mole fractions and temperature models derived above are solved numerically using Runge-Kutta algorithm (ode 45 MATLAB Solver).
2. Steady state yields of mole fractions and temperature obtained from the Simulation process are compared with the plant data to get percentage deviations of the Naphtha lump feeds (Paraffins, Naphthenes, Aromatics and Gas).
3. Steady state yields of the mole fractions and temperature of the species are then subjected to Optimization procedures:

The objective function (S) for the optimization method is given:

\[
S = \sum_{i=1}^{4} \left(\frac{(y_{i,\text{plant}} - y_{i,\text{cal}})^2}{(T_{0,\text{plant}} - T_{0,\text{cal}})^2} \right)
\]
(9)

Subject to (Constrain functions) given as:

- \(y_{P,0} = 0.3478 \text{ mol} \); \(y_{N,0} = 0.5144 \text{ mol} \); \(y_{A,0} = 0.1378 \text{ mol} \); \(y_{G,0} = 0 \text{ mol} \); \(T_0 = 780K \)
- \(y_{i,0} \geq 0; T_0 \geq 0, i = P, N, A \text{ & G} \)
- \(y_{i,\text{cal}} \) & \(T_{\text{cal}} \) = Computed from ode 45-solver

The statistical test approach i.e. \(F_{\text{cal}} \) as the convergence or boundary limit for the iteration optimization process is stepwise stated below:

- \(y_{i,\text{plant}} \) & \(T_{\text{plant}} \) = obtained from literature (plant data) or initial boundary conditions
- \(\bar{y}_i = \text{mean value of } y_i \) i.e. \(\bar{y}_i = \frac{\sum y_i}{n} \); \(n = 41 \)
- \(\bar{T} = \text{mean value of } T \) i.e. \(\bar{T} = \frac{\sum T}{n} \); \(i = P, N, A \text{ & G} \)
- Compute the Sum of Residual Errors (SSE)
 \[
 \text{SSE} = \sum_{i=1}^{4} \left(y_{i,\text{plant}} - y_{i,\text{cal}} \right)^2 + \left(T_{0,\text{plant}} - T_{0,\text{cal}} \right)^2
 \]

- Compute the Sum of Square Mean (SSM)
 \[
 \text{SSM} = \sum_{i=1}^{4} \left(y_{i,\text{cal}} - \bar{y}_{0,\text{cal}} \right)^2 + \left(T_{0,\text{cal}} - \bar{T}_{0,\text{cal}} \right)^2
 \]
(10)

- Compute \(F_{\text{cal}} \)
 \[
 F_{\text{cal}} = \frac{\text{SSM}}{\sum_{i=1}^{p} \text{SSM}} = \frac{\text{SSM}}{\text{MSE}}
 \]

(11)

Where:
- Mean of Square Mean (MSM) = \(\frac{\sum_{i=1}^{p} \text{SSM}}{n-p} \)
- Mean of Square Error (MSE) = \(\frac{\sum_{i=1}^{p} \text{SSE}}{n-p} \)

Where:
- \(p = \text{number of kinetic parameters to be optimized} \)
- \(n = \text{number of points or experimental results obtained from the simulations} \)
- Compute \(F_{\text{cal}} \) from 5% confidence level
$1 - \alpha = 1 - 0.05 = 0.95$

Degree of freedom of Error (DFE) = $n - p$

- Compute for the corrected degree of freedom (DFM)

DFM = $p - 1$

$a_f = (1 - \alpha, p - 1, n - p)$ i.e. $a_f(0.95, 3, 7)$ for $n = 41, p = 4$

F_{tab} is gotten from table of F-test on range $(3, 7)$ at 95% confidence level.

- Choose α such that $0 < \alpha < 1$

$\alpha = 0.05$

- Computer for new Activation Energies

$E_i^{i+1} = E_i^i + a \Delta$

(12)

Where:

Δ (increment) = $-(j_i F_i^i)^{-1} F_i$

I_r = matrix of $(n \times p)$

I_r^T = transpose of I, matrix, i.e. $(p \times n)$

Thus:

$\Delta = -[(n \times p)(p \times n)]^{-1}(n \times p)$

(13)

- From the table of F-test, F_{tab} is gotten as:

At 95% confidence level (C.L)

$F_{tab} = 2.911$

- From the F_{tab} at 95% C.L

$F_{tab} = 2.278$

- Termination Criterion

If $F_{Cal} \geq F_{tab}$ stop iteration and the E_i-values are obtained, else continues till $F_{Cal} \geq F_{tab}$

- The optimal values of E_i to obtained the optimal kinetic parameters i.e. rate constants, k_i

$k_i = k_{i,0} \exp \left(\frac{-E_i}{RT}\right)$

(14)

$i = P, N, A \& G$

Step 4: The optimal k_i-values obtained from equation (14) is used to get optimal yields of the mole fractions and temperature of the various species.

Operating Parameters

<table>
<thead>
<tr>
<th>Reactor 3</th>
<th>A_o</th>
<th>Rate constant</th>
<th>$\Delta H_R KJ/Kmol$ of $H_2 lib$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion of naphthenes to aromatics</td>
<td>1.19×10^8</td>
<td>$1.040 \times 10^6 \exp \left[46.15 - \frac{212700}{RT}\right]$</td>
<td>70928</td>
</tr>
<tr>
<td>Conversion of paraffins to naphthenes</td>
<td>4.170×10^{13}</td>
<td>$9.869 \times 10^5 \exp \left[\frac{36956}{RT} - 712\right]$</td>
<td>-44185</td>
</tr>
<tr>
<td>Naphthenes cracking</td>
<td>$4.5881E18$</td>
<td>-51860</td>
<td></td>
</tr>
<tr>
<td>Paraffins cracking</td>
<td>$4.5881E18$</td>
<td>-51860</td>
<td></td>
</tr>
</tbody>
</table>

Table -2 Summary of literature data [3]

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Parameters</th>
<th>Activation Energies E_i, KJ/Kmol</th>
<th>Rate constant (k_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion of Paraffins to Naphthenes</td>
<td>$E_P(E_1) = 356460$</td>
<td>$4.17E12 \exp \left(-\frac{E_1}{RT}\right)$</td>
<td></td>
</tr>
<tr>
<td>Conversion of Naphthenes to Aromatics</td>
<td>$E_N(E_2) = 174500$</td>
<td>$1.19E08 \exp \left(-\frac{E_2}{RT}\right)$</td>
<td></td>
</tr>
<tr>
<td>Naphthenes hydrocracking</td>
<td>$E_A(E_3) = 394380$</td>
<td>$4.5881E18 \exp \left(-\frac{E_3}{RT}\right)$</td>
<td></td>
</tr>
<tr>
<td>Paraffins hydrocracking</td>
<td>$E_G(E_4) = 394380$</td>
<td>$4.5881E18 \exp \left(-\frac{E_4}{RT}\right)$</td>
<td></td>
</tr>
</tbody>
</table>

Other operating parameters for the programming and the optimization process are stated:

$y_{P,0} = 0.3478 \text{ mol}; \ y_{N,0} = 0.5144 \text{ mol}; \ y_{A,0} = 0.1378 \text{ mol}; \ y_{G,0} = 0 \text{ mol}; \ T_0 = 780K$
P=709.275KPa and see also Appendix II for additional operating parameters applied for the resolutions of the models and optimization process.

Flow Chart for the Optimization Computation to Estimate Activation Energies

FLOWCHART

START

\(R, \Delta f, H_1, H_2, H_3, H_4, E_{A1}, E_{A2}, E_{A3}, \Delta p, K_3, K_4, \)
\(C_p, L, u_f \) and \(P, y_{P0}, y_{N0}, y_{A0}, y_{G0}, T_0 \)

Model development at steady state by applying material and energy balance (i.e. for the ode models of \(y_i \) and \(T \) coupled)

Compute the output from the models developed using MATLAB (Ode 45) in unit function in MATLAB

If \(Z = [0 4.1] \)

Display iterative values of \(y_i \) (i.e. \(i = P, A, N \& G \)) and \(T \) coupled

Compute for sum of residual errors (SSE)

\[
SSE = \sum_{i=1}^{4} \left((y_{i,cal} - y_{i,plant})^2 + (T_{0,cal} - T_{0,plant})^2 \right)
\]

Compute for sum of square mean (SSM)

\[
SSM = \sum_{i=1}^{4} \left((y_{i,cal} - \bar{y}_i)^2 + (T_{0,cal} - \bar{T}_0)^2 \right)
\]
Compute for Mean Square Error (MSE) and Mean Square Mean (MSM) i.e.
\[\text{MSE} = \frac{\text{SSM}}{p}; \text{MSM} = \frac{\text{SSE}}{n-p} \]

Compute for \(F_{\text{cal}} = \frac{\text{MSE}}{\text{MSM}} \) and \(F_{\text{tab}} \) from the table, \(F_{\text{tab}} = (1-\alpha, p-1, n-p) \) at \(\alpha = 0.05 \) confidence level

- Compute for \(J_r = (41 \times 4) \) matrix
- Compute for \(J_r^T = (4 \times 41) \) matrix
- Compute for \((J_rJ_r^T)^{-1} = 1/(J_rJ_r^T) \)
- Compute for \(\Delta = -(J_rJ_r^T)^{-1}J_r \)

\[\alpha = 0.85 \]

Compute for \(E_{i}^{(i+1)} = E_{i}^{(i)} + \alpha \Delta \)
Where \(i = P, A, N \) & \(G \)

If \(F_{\text{cal}} \geq F_{\text{tab}} \) where
\[F_{\text{tab}} = 2.911 \]

Display results of \(E_i \) and \(k_i \)
\[k_i = k_{i,e,x} \exp[-E_i/RT] \]
Where \(i = P, A, N \) & \(G \)

STOP
3. RESULTS AND DISCUSSION

The results presented below show the estimation of kinetic parameters of the naphtha lump feeds (Paraffins, Naphthenes, Aromatics and Gas). The results follow optimization algorithm and flow chart presented. MATLAB compiler was used to simulate the models to give steady states and optimal yields of the mole fractions of the Hydrocarbons (HCs) lumps (i.e. naphtha lump feeds). Then steady state results obtained were subjected to optimization process to estimate the kinetic parameters (activation energies and pre-exponential factors). Various results are displayed below in tables and figures which were equally discussed.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>E_i (KJ/Kmol)</th>
<th>A_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffins</td>
<td>354950</td>
<td>3.5445E12</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>173566</td>
<td>1.30E08</td>
</tr>
<tr>
<td>Aromatics</td>
<td>395001</td>
<td>3.212E18</td>
</tr>
<tr>
<td>Gas</td>
<td>394005</td>
<td>5.414E18</td>
</tr>
</tbody>
</table>

Table 3 shows results of activation energies and pre-exponential factors obtained from the optimization process. The values for the various species have considerable changes from the plant values.

<table>
<thead>
<tr>
<th>Z</th>
<th>y_P</th>
<th>y_N</th>
<th>y_A</th>
<th>y_G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3478</td>
<td>0.5144</td>
<td>0.1378</td>
<td>0</td>
<td>780</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3476</td>
<td>0.509</td>
<td>0.233</td>
<td>1.16E-05</td>
<td>780.02</td>
</tr>
<tr>
<td>1.0</td>
<td>0.347</td>
<td>0.461</td>
<td>0.344</td>
<td>2.52E-05</td>
<td>780.04</td>
</tr>
<tr>
<td>1.5</td>
<td>0.336</td>
<td>0.433</td>
<td>0.406</td>
<td>3.88E-05</td>
<td>780.06</td>
</tr>
<tr>
<td>2.0</td>
<td>0.33</td>
<td>0.344</td>
<td>0.568</td>
<td>5.25E-05</td>
<td>780.08</td>
</tr>
<tr>
<td>2.5</td>
<td>0.30</td>
<td>0.256</td>
<td>0.68</td>
<td>6.61E-05</td>
<td>780.10</td>
</tr>
<tr>
<td>3.0</td>
<td>0.26</td>
<td>0.217</td>
<td>0.791</td>
<td>7.97E-05</td>
<td>780.12</td>
</tr>
<tr>
<td>3.5</td>
<td>0.22</td>
<td>0.130</td>
<td>0.903</td>
<td>9.34E-05</td>
<td>780.14</td>
</tr>
<tr>
<td>4.0</td>
<td>0.20</td>
<td>0.094</td>
<td>1.00</td>
<td>1.07E-04</td>
<td>780.16</td>
</tr>
<tr>
<td>4.1</td>
<td>0.20</td>
<td>0.094</td>
<td>1.00</td>
<td>1.07E-04</td>
<td>780.16</td>
</tr>
</tbody>
</table>

Table 4 depicts the results of optimal yields of the various species obtained due to the estimated E_i & A_i values from the optimization process carried out.

<table>
<thead>
<tr>
<th>Z</th>
<th>y_P</th>
<th>y_N</th>
<th>y_A</th>
<th>y_G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3478</td>
<td>0.5144</td>
<td>0.1378</td>
<td>0</td>
<td>780</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3476</td>
<td>0.509</td>
<td>0.233</td>
<td>1.16E-05</td>
<td>780.0163</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3462</td>
<td>0.462</td>
<td>0.345</td>
<td>2.53E-05</td>
<td>780.0367</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3401</td>
<td>0.323</td>
<td>0.457</td>
<td>3.90E-05</td>
<td>780.057</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3000</td>
<td>0.282</td>
<td>0.569</td>
<td>5.26E-05</td>
<td>780.0774</td>
</tr>
<tr>
<td>2.5</td>
<td>0.2650</td>
<td>0.240</td>
<td>0.681</td>
<td>6.63E-05</td>
<td>780.0978</td>
</tr>
<tr>
<td>3.0</td>
<td>0.2020</td>
<td>0.201</td>
<td>0.793</td>
<td>8.00E-05</td>
<td>780.1181</td>
</tr>
<tr>
<td>3.5</td>
<td>0.1980</td>
<td>0.193</td>
<td>0.905</td>
<td>9.37E-05</td>
<td>780.1385</td>
</tr>
<tr>
<td>4.0</td>
<td>0.1500</td>
<td>0.145</td>
<td>1.000</td>
<td>1.08E-04</td>
<td>780.1589</td>
</tr>
<tr>
<td>4.1</td>
<td>0.1050</td>
<td>0.104</td>
<td>1.000</td>
<td>1.09E-04</td>
<td>780.1629</td>
</tr>
</tbody>
</table>

Where: SSP = Steady-state process

Table 5 show steady state yields of mole fractions and Temperature of the various species of the naphtha lump feeds obtained from numerical integration using 4th order Runge-Kutta algorithm as a result of models developed.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Optimum E_i (KJ/Kmol)</th>
<th>Plant E_i (KJ/Kmol)</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumps (reformate)</td>
<td>354950</td>
<td>356460</td>
<td>0.424</td>
</tr>
<tr>
<td>Paraffins</td>
<td>173566</td>
<td>174500</td>
<td>0.535</td>
</tr>
<tr>
<td>Aromatics</td>
<td>395001</td>
<td>394380</td>
<td>0.0157</td>
</tr>
<tr>
<td>Gas</td>
<td>394005</td>
<td>394380</td>
<td>0.0951</td>
</tr>
</tbody>
</table>

Table 6 show the comparison of the estimated activation energies of various species of naphtha lump feeds with plant value obtained from Wordu, [3]. The deviations are reasonable and thus indicate that the optimization approach is good.
Table -7 Comparison of estimated Arrhenius constant with literatures of Naphtha Lumps feed

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre-exponential factor $A_{i,0}$</th>
<th>Arrhenius constant A_i</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffins</td>
<td>4.17E12</td>
<td>3.5445E12</td>
<td>15</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>1.19E08</td>
<td>1.30E08</td>
<td>9</td>
</tr>
<tr>
<td>Aromatics</td>
<td>4.5881E18</td>
<td>3.212E18</td>
<td>30</td>
</tr>
<tr>
<td>Gas</td>
<td>4.5881E18</td>
<td>5.414E18</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 7 depicts the percentage deviation of the pre-exponential factors (Arrhenius constants) with plant or literature values. The deviations of the various species of naphtha lumps feed (P, N, A, & G) are reasonable and explained that the approach utilize for the optimization process is a better one.

Table -8 Results of rate constants calculated from optimal $E_i, A_i, \text{& } T_{o,cal}$ values obtained above

<table>
<thead>
<tr>
<th>Parameters</th>
<th>k_i</th>
<th>k_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffins</td>
<td>$3.545E12 \times \exp\left(\frac{354950}{RT}\right)$</td>
<td>5.63E-12</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>$1.30E08 \times \exp\left(\frac{173566}{RT}\right)$</td>
<td>2.46E-04</td>
</tr>
<tr>
<td>Aromatics</td>
<td>$3.212E18 \times \exp\left(\frac{395001}{RT}\right)$</td>
<td>1.79E-08</td>
</tr>
<tr>
<td>Gas</td>
<td>$5.414E18 \times \exp\left(\frac{394000}{RT}\right)$</td>
<td>1.56E-08</td>
</tr>
</tbody>
</table>

Table 8 shows the calculated rate constants from the estimated activation energies, Arrhenius constants and optimal Temperature values obtained from the optimization process. The results gave a good estimate of the parameters and should be followed and adopted.

Table -9 Comparison of optimum kinetic parameters with literature k_i from table 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Optimum k_i</th>
<th>Literature k_i</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumps (reformate)</td>
<td>$5.63E-12$</td>
<td>$5.5981E-12$</td>
<td>0.570</td>
</tr>
<tr>
<td>Paraffins</td>
<td>$2.46E-04$</td>
<td>$2.451E-04$</td>
<td>0.367</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>$1.79E-08$</td>
<td>$1.77845E-08$</td>
<td>0.650</td>
</tr>
<tr>
<td>Aromatics</td>
<td>$1.56E-08$</td>
<td>$1.77845E-08$</td>
<td>12</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9 shows the deviation of rate constants of the various species of the naphtha lumps feed gotten as a result of plant data and the estimated activation energies, Arrhenius constants and Temperature respectively.

Table -10 Comparison of optimum Yield with SSV

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Optimum yield</th>
<th>SSV</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumps (reformate)</td>
<td>Mole</td>
<td>Mole</td>
<td>D</td>
</tr>
<tr>
<td>Paraffins</td>
<td>0.25406</td>
<td>0.26011</td>
<td>0.023</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>0.30524</td>
<td>0.29654</td>
<td>0.029</td>
</tr>
<tr>
<td>Aromatics</td>
<td>0.60628</td>
<td>0.61208</td>
<td>0.0095</td>
</tr>
<tr>
<td>Gas</td>
<td>$5.8146E-05$</td>
<td>$5.8544E-05$</td>
<td>0.0068</td>
</tr>
<tr>
<td>Temperature</td>
<td>780.088</td>
<td>780.0815</td>
<td>0.0000385</td>
</tr>
</tbody>
</table>

Where: SSV= Steady-State Values; OY = Optimum Yield

Table 10 indicates comparison of the optimal yield with steady state yield. The deviations shows that there is a difference in the two results as optimization procedures gave a better estimates of kinetic parameters to the literature ones, hence variation of the yields.

Table -11 Comparison of Optimum Yield with Literature Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Model Predictions</th>
<th>Lit. Data</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumps (reformate)</td>
<td>Mole</td>
<td>Mole</td>
<td>D</td>
</tr>
<tr>
<td>Paraffins</td>
<td>0.25406</td>
<td>0.3478</td>
<td>0.26</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>0.30524</td>
<td>0.5144</td>
<td>0.41</td>
</tr>
<tr>
<td>Aromatics</td>
<td>0.60628</td>
<td>0.1378</td>
<td>3.4</td>
</tr>
<tr>
<td>Gas</td>
<td>$5.8146E-05$</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Temperature</td>
<td>780.088</td>
<td>780</td>
<td>0.00011</td>
</tr>
</tbody>
</table>

Table 11 indicates comparison of the optimal yield with the literature data. The deviation shows that the estimated kinetic parameters differ from the literature ones. Hence optimization process gave better yields (optimal yields).
Table -12 Comparison of Steady State Values with Literature Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Literature data</th>
<th>SS-values</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumps (reformate)</td>
<td>Mole</td>
<td>Mole</td>
<td>D</td>
</tr>
<tr>
<td>Paraffins</td>
<td>0.3478</td>
<td>0.26011</td>
<td>0.25</td>
</tr>
<tr>
<td>Naphthenes</td>
<td>0.5144</td>
<td>0.29654</td>
<td>0.42</td>
</tr>
<tr>
<td>Aromatics</td>
<td>0.1378</td>
<td>0.61208</td>
<td>3.44</td>
</tr>
<tr>
<td>Gas</td>
<td>0</td>
<td>5.854E-05</td>
<td>-</td>
</tr>
<tr>
<td>Temperature</td>
<td>780</td>
<td>780.0815</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 12 depicts comparison of the steady state yield and plant data. The deviation indicates the essence of this research for the estimation of kinetic parameters, but the deviation are below and small indicating the accuracy of the method applied in the research to give results.

Figure 3 depicts optimal yield of mole fractions for the various species (P, N, A, & G) of the Naphtha lumps feed with the reactor length. The result shows that there is progressive increase in the mole fractions of Aromatics and Gas respectively starting from YA=0.1378mole and YG=0mol at z=0m to respectively YA=1mol and YG=0.000107mol at z=4m.

The optimal yield of paraffins and Naphthenes decreases from YP=0.3478mol and YN=0.5144mol to YP=0.20mol and YN=0.094mol at z=0m to z=4m respectively. This is due to the kinetic scheme of the complex series-parallel reactions in the reformer cracks to give more than one products and heat involved in the process. The optimal yields are gotten as a result of the estimated kinetic parameters (activation energies and pre-exponential factors) using single point regression analysis iterative optimization process. These optimal kinetic parameters were subjected back to the algorithm of optimization to generate various species yields.

Figure 4 shows the steady state yields of mole fractions of the various species (P, N, A, and G) of the Naphtha lump feeds varying along the reactor length. The graph shows that the yield of paraffins and naphthenes decreases from Y1=0.3478mol and Y2=0.5144mol at z=0m to Y1=0.1050mol and Y2=0.104mol respectively at z=4m. Aromatics and
gas are also produced from the reaction process. The yield of Gas and Aromatics increases from Y4=0mol and Y3=0.1378mol at z=0m to respectively Y4=0.000109mol and Y3=1.0mol at z=4m. Decrease in yield of paraffins and naphthenes indicate they depletes to gives Aromatics, and Gas (C1 – C4 fractions) and at a long run, the decreases becomes constant in the reactor. The steady state models gave the various yields in mol and results proved that the models were better developed.

Figure 5 shows endothermic process occurring in the reformer and heat increases along the reformer but in small quantity as shown above. The profile indicates that at optimal functioning of the reactor, very small amount of heat is added as 780K to 780.18K is the range of heat in the reformer.

Figure 6 indicates steady state temperature profile varying along the reactor. The reaction process occurring in the reformer is endothermic process showing that heat is added but in small quantity as indicated in the plot. The temperature in Kelvin increases as reactor length increases from z=0m, T=780K to z=4m when T=780.1625K.

4. CONCLUSION
The development of steady-state model for component species of P, N, A, and G and temperature of Naphtha reactor was achieved applying principles of conservation of mass and energy. The Kinetic Expressions were developed from the series-parallel reactions taking place in the reactors. The ordinary differential equations developed were solved and simulated using mat-lab Ode-45-solver. Various results are tabulated in Tables 3 to 12 and profile plots are shown in figures 3 to 6. The steady state models prediction results were subjected to optimization process (i.e. single point regression analysis) to estimate the activation energies and pre-exponential factor of the paraffins, naphthenes, aromatics and gas. The optimal yields were obtained from the updated parameters.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_a</td>
<td>Activation Energy</td>
<td>KJ/Kmol</td>
</tr>
<tr>
<td>ΔH</td>
<td>Enthalpy Change</td>
<td>KJ/Kmol</td>
</tr>
<tr>
<td>T</td>
<td>Absolute Temperature</td>
<td>K</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
<td>KJ/Kmol K</td>
</tr>
</tbody>
</table>

82
\[A \] Pre-exponential factor/frequency factor or Arrhenius constant
\[\rho_i \] Density of species \(i \) Kg/m\(^3\)
\[\rho_r \] Total Density Kg/m\(^3\)
\[y_i \] Mole fraction of species \(i \), mol
\[SS \] Sum of squares -
\[\Delta \] Incremental value -
\[r_i \] Rate of reaction of species, \(i \), mol/m\(^3\)/s
\[PESS \] Pure error sum of squares -
\[RSS \] Regression sum of square -
\[v_o \] Volumetric flow, m\(^3\)/s
\[\Delta H_{r,i} \] Change of Heat of Reaction of species, \(i = N, P, A & G \) KJ/Kmol
\[Q \] Quantity of heat, KJ/s (KW)
\[q \] heat per unit volume KW/m\(^3\)
\[C_p \] Specific heat capacity KJ/KmolK
\[u_f \] Superficial velocity, m/s
\[k_p \] Equilibrium constant KJ/Kmol
\[k_f \] Rate constant of forward reaction
\[k_r \] Rate constant of reverse reaction

REFERENCES